Please use another Browser

It looks like you are using a browser that is not fully supported. Please note that there might be constraints on site display and usability. For the best experience we suggest that you download the newest version of a supported browser:

Internet Explorer, Chrome Browser, Firefox Browser, Safari Browser

Continue with the current browser

Brandschutz für stationäre Lithium-Ionen-Batterie-Energiespeichersysteme

Thermal Runaway als Gefahrenszenario
Wird der sichere Temperaturbereich überschritten, kann es zu einem so genannten Thermal Runaway kommen, was im deutschen Sprachbereich auch als thermisches Durchgehen bezeichnet wird. Bei einem Runaway wird in der Batterie gespeicherte Energie schlagartig freigesetzt und die Temperatur steigt innerhalb von Millisekunden auf mehrere hundert Grad an. Das Elektrolyt entzündet sich bzw. das Elektrolytgas explodiert.
Im Zuge der Entwicklung eines Thermal Runaways verdampft das Elektrolyt mit ansteigender Temperatur sukzessive. Dadurch baut sich der Innendruck in der Zelle immer weiter auf, bis der Elektrolytdampf entweder über ein Überdruckventil oder durch das Bersten der Hülle freigesetzt wird. Ohne Gegenmaßnahmen wird dabei ein explosives Gas-Luft-Gemisch entstehen. Eine Zündquelle reicht dann aus, um eine explosionsartige Verbrennung herbeizuführen. Zudem kann sich ein Thermal Runaway in einem Batteriesystem von Zelle zu Zelle ausbreiten und so zu einem Großbrand führen.
Mögliche Ursachen für einen solchen Thermal Runaway liegen entweder außerhalb oder innerhalb der Batteriezelle. Im ersten Fall können extreme äußere Einflüsse, wie z. B. ein Gebäudebrand, dazu führen, dass die Temperatur in der Batterie über den tolerierbaren Wert steigt. Im zweiten Fall ist ein interner Kurzschluss Ursache für den gefährlichen Temperaturanstieg. Der Auslöser dafür wiederum ist eine extern beigeführte mechanische Beschädigung oder ein altersbedingter Ausfall des Separators durch Dendritenbildung.
Schutzkonzept zur Vermeidung einer Thermal-Runaway-Ausbreitung
Wie Versuche im Brandlabor von Siemens Smart Infrastructure in Altenrhein in der Schweiz an Lithium-Ionen Batterien unterschiedlichster Zellchemien (getestet wurden u.a. Lithium-Kobalt-Oxid-, Lithium-Mangan-Oxid-, Lithium-Nickel-Mangan-Kobalt-Oxid- und Lithium-Eisenphosphat Zellen) gezeigt haben, kündigt sich ein Thermal Runaway schon vor dem eigentlichen thermischen Durchgehen an. Ein zuverlässiger Indikator ist das ausgasende Elektrolyt. Sobald also ein Elektrolytgas auftritt, ist mit einem Thermal Runaway zu rechnen. Es bleibt dann aber noch genügend Zeit, um automatisch geeignete Gegen- bzw. Löschmaßnahmen auszulösen. Das heißt zum einen: Löschmittel in ausreichender Konzentration in den Batterieraum einzubringen, bevor der Separator der ersten Batteriezelle ausfällt. Und zum anderen über das Batteriemanagementsystem Abschaltungen vorzunehmen, die die Entwicklung eines Runaways durch Überladung oder Überlast möglicherweise noch stoppen können.Die schnelle Flutung des Batterieraums mit dem Löschmittel verhindert, dass große Mengen an explosivem Elektrolyt-Sauerstoff-Gemisch entstehen und dass die Ausprägung eines ersten Thermal Runaways verringert sowie das Übergreifen auf benachbarte Batteriezellen gehemmt wird. Sekundärbrände und – durch eine langanhaltende Inertisierung – auch Rückzündungen sind ausgeschlossen.
Schritt 1: Detektion durch Ansaugrauchmelder
Ein entsprechendes Schutzkonzept muss also im ersten Schritt nicht nur eine zuverlässige Branderkennung gewährleisten, sondern auch eine möglichst frühe Elektrolytgas-Detektion. Diese Herausforderung erfüllt der Siemens-Ansaugrauchmelder, der mittels der Dual-Wellentechnologie sowohl elektrische Brände als auch Elektrolytgase bzw. -dämpfe auch bei hohen Luftgeschwindigkeiten und geringen Gaskonzentrationen zuverlässig detektiert.Ansaugrauchmelder (auch als Rauchansaugsysteme bezeichnet) entnehmen kontinuierlich Luftproben aus den zu überwachenden Bereichen und überprüfen diese auf Rauch- und Gaspartikel. Die Luftproben werden über ein Ansaugrohrnetz mit definierten Ansaugöffnungen angesaugt und der patentierten Messkammer zugeführt. Dort erkennt eine Auswerteeinheit die Größe der Partikel und deren Konzentrationen. Dabei lassen sich auch geringste Mengen von Brand- und Elektrolytgasen detektieren.
Schritt 2: Löschung durch Inertgas
Haben die Melder einen Brand bzw. Elektrolytgas erkannt, muss umgehend eine automatische Löschung durch eine Löschanlage ausgelöst werden. Nicht nur, weil eine Löschung mit Wasser in elektrischen Systemen zu vermeiden ist, sondern auch weil versteckte oder verdeckte Brandherde mit Wasser nicht erreicht werden, wird das Batteriesystem über Düsen mit einem gasförmigen Löschmittel geflutet. Dieses bringt auch verdeckte oder versteckte Brandquellen zum Verlöschen, indem es den für den Brand notwendigen Sauerstoff verdrängt. Bleibt die Frage nach dem geeigneten Löschmittel. Auch chemisch wirkende Löschmittel scheiden in diesem konkreten Fall aus, da sich zum einen gefährliche Zersetzungsprodukte bilden und zum anderen Halteflutungen notwendig sein können. Damit bleiben die natürlichen Löschgase Stickstoff (N2), Kohlenstoffdioxid (CO2) und Argon (Ar) als mögliche Alternativen.Diese unterscheiden sich im Detail. So wird das im Vergleich teure Edelgas Argon nur für spezielle Anwendungen wie etwa Metallbrände eingesetzt. Kohlenstoffdioxid, das effektivste unter den vorgenannten Löschmitteln, ist primär für nicht begehbare Bereiche oder Objektschutzsysteme vorgesehen, da es in der benötigten Löschkonzentration für Menschen gefährlich ist. Vor diesem Hintergrund wird reiner Stickstoff als Löschmittel verwendet, der auch für Lithium-Ionen-Batteriespeicher sehr gute Ergebnisse bringt.
Fazit
Lithium-Ionen-Batterien bergen charakteristische Brandrisiken. Ein anwendungsspezifisches Brandschutzkonzept kombiniert frühestmögliche Branderkennung mit leistungsfähigen Ansaugrauchmeldern und Inertgaslöschanlagen. Eine sehr frühe Flutung mit dem Löschmittel verhindert die Bildung großer Mengen explosiver Elektrolyt-Sauerstoff-Gemische, reduziert die Ausprägung eines ersten Thermal Runaways, hemmt das Übergreifen solcher Runaways auf andere Batterien und vermeidet Sekundärbrände sowie Rückzündungen. Mithilfe eines solchen Schutzkonzeptes, sind stationäre Lithium-Ionen-Batteriespeichersysteme ein beherrschbares Risiko. Das von Siemens entwickelte «Schutzkonzept für stationäre Lithium-Ionen-Batterie-Energiespeichersysteme» hat im Dezember 2019 als erstes und bisher einziges Brandschutzkonzept die VdS-Anerkennung (VdS Nr. S 619002) erhalten.


For this press release

Siemens Smart Infrastructure (SI) gestaltet den Markt für intelligente, anpassungsfähige Infrastruktur für heute und für die Zukunft. SI zielt auf die drängenden Herausforderungen der Urbanisierung und des Klimawandels durch die Verbindung von Energiesystemen, Gebäuden und Wirtschaftsbereichen. Siemens Smart Infrastructure bietet Kunden ein umfassendes, durchgängiges Portfolio aus einer Hand – mit Produkten, Systemen, Lösungen und Services vom Punkt der Erzeugung bis zur Nutzung der Energie. Mit einem zunehmend digitalisierten Ökosystem hilft SI seinen Kunden im Wettbewerb erfolgreich zu sein und der Gesellschaft, sich weiterzuentwickeln – und leistet dabei einen Beitrag zum Schutz unseres Planeten: SI creates environments that care. Der Hauptsitz von Siemens Smart Infrastructure befindet sich in Zug in der Schweiz. Das Unternehmen beschäftigt weltweit etwa 72.000 Mitarbeiterinnen und Mitarbeiter.

Mehr
Über Siemens Österreich
Siemens Österreich zählt zu den führenden Technologieunternehmen des Landes. Insgesamt arbeiten für Siemens in Österreich rund 11.000 Menschen. Der Umsatz lag im Geschäftsjahr 2019 bei rund 3,5 Milliarden Euro. Die Geschäftstätigkeit konzentriert sich auf die Gebiete Elektrifizierung, Automatisierung und Digitalisierung. Dazu gehören im Wesentlichen Systeme und Dienstleistungen für die Energieerzeugung, -übertragung und -verteilung ebenso wie energieeffiziente Produkte und Lösungen für die Produktions-, Transport- und Gebäudetechnik bis hin zu Technologien für hochqualitative und integrierte Gesundheitsversorgung. Automatisierungstechnologien, Software und Datenanalytik spielen in diesen Bereichen eine große Rolle. Mit seinen sechs Werken, weltweit tätigen Kompetenzzentren und regionaler Expertise in jedem Bundesland trägt Siemens Österreich nennenswert zur heimischen Wertschöpfung bei. Im abgelaufenen Geschäftsjahr betrug alleine das Fremdeinkaufsvolumen von Siemens Österreich bei rund 10.400 Lieferanten – etwa 6.500 davon aus Österreich – rund 1,2 Milliarden Euro. Siemens Österreich hat die Geschäftsverantwortung für den heimischen Markt sowie für weitere 20 Länder (Region Zentral- und Südosteuropa sowie Israel).
Weitere Informationen: www.siemens.at

Mehr

Kontakt

Johanna BÜRGER

Siemens AG Österreich

+43 (664) 88555678